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Abstract

Difficulties associated with specifying details of microstructure and distributions of internal stress and strain within multiphase rocks

prompt the development of semi-empirical models to connect the effective properties of composites to the properties of their components.

We apply here generalized means to describe the elastic moduli (E, K and G) and flow strength of an isotropic multiphase composite material

in terms of its component properties, volume fractions and microstructures. The microstructures are expressed by a scaling parameter J,

which is mainly controlled by the shape and distribution (continuity and connectivity) of the phases. The case J ¼ 1 yields the arithmetic

mean or Voigt average and the case J ¼ 21 yields the harmonic mean or Reuss average. The geometrical mean occurs as J approaches zero.

The means with J ¼ 20.5 or J ¼ 0.5 provides good agreement with the experimental data of Young’s modulus for the two-phase composites

in which strong or weak inclusions are shaped like spheres isolated in a continuous host medium. For most composite materials in which the

inclusions are of somewhat arbitrary geometry, the means with J ¼ 20.25 and J ¼ 0.25 do well at predicting the measured values of

Young’s modulus for those with weak-phase continuous (the volume fraction of strong phase fs # 0.5) and strong-phase continuous

( fs $ 0.7) structures, respectively. In the intermediate range (0.5 # fs # 0.7), J is expected to vary progressively from 20.5 to 0.5 or from

20.25 to 0.25 due to the transition in microstructure. Thus the generalized means offer a promising, phenomenological approach for the

prediction of elastic and rheological properties of multiphase materials and rocks, especially for those consisting of more than two unlike

phases. As an example, the approach is applied to interpret the sharpness of the 410-km seismic discontinuity as a corollary of the transition

from an olivine- to a wadsleyite-dominant structure.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: Generalized means; Elastic properties; Rheology; Multiphase rocks; Composite materials; Seismic discontinuities

1. Introduction

It is virtually impossible to obtain exact analytical

solutions for mechanical properties (Young’s modulus E,

shear modulus G, bulk modulus K, and flow strength s) of a

multiphase mixture with a heterogeneous microstructure

due to the fact that the local distributions of stress and strain

of each constituent are influenced by the details of

microstructure. Although advanced numerical techniques

such as finite element modelling (e.g. Tullis et al., 1991;

Treagus, 2002) have some inherent advantages for solving

the above problem, they are too tedious to employ for each

new composite. The numerical modelling results generally

cannot be readily used in an efficient, straightforward

manner in calculating the bulk mechanical properties of

multiphase materials. Therefore, it is necessary to develop

semi-empirical models to connect the overall properties of

composites to the properties of their components. In this

paper we use the generalized means as a phenomenological

approach to calculate the elastic moduli (E, K and G) and

flow strength of an isotropic composite material in terms of

its component properties and volume fractions.
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2. Mechanical properties of multiphase aggregates

The generalized (weighted) means can be expressed as:

Mc Jð Þ ¼
XN
i¼1

fiM
J
i

� �" #1=J

ð1Þ

where M is a specific mechanical property (E, K, G, or s), f

is the volume fraction of component, the subscripts i and c

represent, respectively, the ith phase and the composite

consisting of N phases, and J is a scaling parameter.

XN
i¼1

fi ¼ 1 ð2Þ

Here we propose that Eq. (1) is generically useful in the

calculations of mechanical properties of multiphase

materials. For example, the case J ¼ 1 yields the arithmetic

mean or Voigt average, which represents equal strain rate

between phases. The case J ¼ 21 yields the harmonic mean

or Reuss average, which represents equal stress between

phases. For statistically isotropic composites in which there

is no mechanical interaction between phases (see Ji et al.

(2000) for discussion), the Voigt and Reuss averages are

generally regarded as the upper and lower bounds for

effective properties and bracket the permissible range in

which the effective properties must lie. The Voigt bound is

linear with the volume fraction. The case J ¼ 21 yields a

formula likeWyllie’s ‘time-average equation’ (Wyllie et al.,

1956) for fluid-filled sedimentary rocks:

1

Vc

¼
f

V1

þ
12 f

V2

ð3Þ

where V is a given seismic velocity, f is the porosity, the

subscripts 1, 2 and c represent, respectively, the fluid-filled

pores, the solid medium and the composite. The Hill or the

Voigt–Reuss–Hill average is an arithmetic mean of the

Voigt and Reuss bounds (Hill, 1963).

Eq. (1) can be written as:

MJ
c ¼

XN
i¼1

ð fiM
J
i Þ ð4Þ

Taking the derivative of Eq. (4), and then let J ! 0, we

have:

lnMc ¼
XN
i¼1

filnMi ¼
XN
i¼1

lnM
fi
i ¼ ln

YN
i¼1

M
fi
i

 !
ð5Þ

Eq. (5) clearly shows that as J approaches zero, the limit

of Mc(J) is the geometrical mean:

lim
J!0

Mc Jð Þ ¼
YN
i¼1

M
fi
i ð6Þ

The geometrical mean has been found to yield a result

very close to the much more complicated iterative self-

consistent micromechanical models (Matthies and Humbert,

1993; Mainprice and Humbert, 1994).

In the extreme cases, Mc(J ! 2 1) and Mc(J ! þ 1)

define the minimum and the maximum, respectively. Mc(J)

has the following characteristics. (a) Mc(J) is a continuous,

monotone increasing function for all J in the ranges

(21 , J , 1). This monotonicity stands with respect to

either the volume fractions or the physical properties

(Korvin, 1982). (b) For J , 1, J ¼ 1 and J . 1, Mc(J) as

a function of the individual grades of membership Mi is

strongly concave, linear, and strongly convex, respectively.

(c) For a simple two-phase composite system that consists of

the strong (s) and weak (w) phases, the generalized means

fulfil the following obvious requirements: for fs ¼ 0 (pure

weak phase aggregate), the effective properties are equiv-

alent to the properties of the weak phase for all values of J.

Similarly, for fs ¼ 1 (pure strong phase aggregate), the

effective properties are equivalent to the properties of the

strong phase for all values of J. In the event that Ms ¼ Mw

(two phases have an equivalent property), then Mc ¼ Ms ¼

Mw for all values of J and all values of fs.

In Eq. (1), J can be viewed as a compensation coefficient

whose value depends on characteristics of the composite

microstructure such as the nature of interphase boundaries,

phase continuity and connectivity. If the bonding between

the phases is perfect, then the J value could be mainly

controlled by the phase continuity and connectivity.

Composites consisting of a strong and a weak constituent

can be classified into three categories according to their

phase continuity and connectivity (e.g. Gurland, 1979; Ji

and Xia, 2002):

1. Composites with a strong-phase supported structure

(SPSS), in which the strong phase is continuous while

the weak phase is discontinuous in the direction of the

applied load.

2. Composites with a weak-phase supported structure

(WPSS), in which the strong phase is discontinuous

while the weak phase is continuous in the loading

direction.

3. Composites with a transitional structure (TS), in which

both the strong and the weak phases are continuous or

discontinuous in the loading direction.

The structures of granular materials generally depend on

the volume fraction of constituent minerals. In hot-pressed

forsterite–enstatite aggregates (Ji et al., 2001), for example,

the SPSS, WPSS and TS occur, respectively, in composites

with fs . 0.7, ,0.5, and 0.5–0.7. In addition to the volume

fractions, the phase continuity and connectivity are of

course affected by many other structural variables such as

the morphology, grain size and the orientation of the

constituents, which will be considered in a future study. The
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phase continuity also changes with increasing progressive

strain. A transition from SPSS to WPSS may result in a

drastic decrease in effective elastic moduli or flow strength

of the composites. This critical phenomenon has been used

to explain the rheology of partially melted materials (e.g.

Arzi, 1978; Rutter and Neumann, 1995) and solid-state

rocks (e.g. Ji and Xia, 2002).

The overall mechanical properties can thus be estimated

according to Eq. (1) if J is known. Then the problem at hand

is to determine whether the J value is approximately

constant for each of the structural categories. If J is a

constant for a given type of structure, what is its value? The

J value has to be determined by fitting the equation to

experimental data.

3. Comparison with experiments

In order to test the theoretical model, high quality

experimental data are needed for a series of macroscopically

homogeneous and isotropic two-phase composites contain-

ing various known volume fractions of each constituent over

a range as wide as possible. The polycrystalline aggregate of

each end member phase should be isotropic so that only two

elastic constants are necessary to characterize the bulk

properties. These two elastic constants should be obtained

by simultaneous measurements on the same specimen type

in order to minimize effects due to experimental techniques

and specimen variation. Any chemical interaction between

phases or eutectic partial melting may introduce additional

phases, consequently making the system complicated. The

volume fraction of each phase should be accurately

determined. For example, the presence of small amounts

of residual void space (on the order of 1% by volume) is

sufficient to make estimates of composite elastic constants

(obtained while ignoring this porosity) fall below the lower

Hashin–Shtrikman (HS) bound in many cases (Berryman,

1994, 1995). Furthermore, a shape preferred orientation

may cause the composite to be anisotropic, but this effect

can be avoided by using spherical particles in an isotropic

matrix or random orientations of the grains. In addition, the

contrast in elastic moduli between the phases should be

large. Previous experimental checks of mixture rules (Watt

and O’Connell, 1980; Ji and Wang, 1999) probably did not

meet this criterion.

Elasticity and seismic velocities have been extensively

measured for natural polyphase rocks (see Ji et al. (2002) for

a comprehensive summary). However, such natural rocks

are not optimal for the comparison between theory and

experiment in order to determine the J value as a function of

microstructure (e.g. phase continuity) primarily for the

following reasons. (a) Natural rocks have complex miner-

alogical and chemical compositions and are rarely com-

posed of only two minerals. (b) Natural rocks are generally

anisotropic due to the presence of crystallographic preferred

orientation and/or compositional layering. (c) Elasticity of

each given natural composite system can hardly be

determined over a full range of modal composition (Ji

et al., 2003). (d) The volume fractions of constituent

minerals reported for the rocks whose seismic velocities

have been measured generally are not precise enough to

yield an exact J value. It is thus especially important to

determine the J value through carefully designed exper-

iments using synthetic two-phase aggregates of well-

controlled modal compositions and microstructures.

Unfortunately, such elastic data are still very scarce for

synthetic multiphase rocks. Thus, the elastic properties

predicted by the expressions proposed in this paper were

compared with the experimentally measured values of

various synthetic composites, reported in the materials

science and geophysics literature, in order to constrain the J

value and its variation with composition.

3.1. SPSS composites

Porous materials are a special class of SPSS composites

in which pores are dispersed within a continuous nonporous

body. Pores act like a constituent with null elastic constants.

Porous powder metals, ceramics, sedimentary rocks and

cracked rocks belong to this category. Powder metals and

ceramics are usually manufactured by sintering or hot

pressing. Polyphase materials in which the weak phases are

at least two orders of magnitude weaker than the strong

phases (e.g. partially melted rocks) can also be regarded as

an analogy of porous materials (Arzi, 1978; Tharp, 1983; Ji

and Xia, 2002). In Eq. (1), setting the elastic properties of a

phase equal to zero allows an estimation of the effect of

porosity on elastic properties of porous materials. As shown

in Fig. 1, the relative Young’s modulus calculated from Eq.

(1) and using J ¼ 0.25 are in good agreement with

experimental data for porous Al2O3 (Spriggs, 1961;

Knudson, 1962) and porous MgO (Spriggs et al., 1962)

polycrystalline aggregates with porosities less than about

40% (i.e. fs . 60%). The relative Young’s modulus is

defined as (Ec 2 Ew)/(Es 2 Ew), where Es, Ew and Ec are

the Young’s moduli of the strong phase, weak phase and the

composite, respectively. For porosities less than 20%, the

discrepancy between the experimental and theoretical

results predicted with J ¼ 0.25 is no more than a few

percent. In contrast, the Hill average cannot yield a good fit

to the experimental data. Thus, J ¼ 0.25 is apparently an

appropriate assumption for the porous Al2O3 and MgO

investigated.

Walsh et al. (1965) carried out a series of experiments on

the compressibility (1/K) of porous glass (glass foams) over

a range of porosities from 0 to 0.7. The glass has the

composition (in weight) 54.4% SiO2, 14.4% B2O3, 14.1%

CaO, 10% Al2O3, 6.5% Na2O and 0.7% K2O, K ¼ 46 GPa

andG ¼ 30.5 GPa. Porosity measurements were stated to be

accurate to^0.01. The experimental data are plotted in Fig.

2 for comparison with the theoretical relation proposed in

the present paper and with the Hashin–Shtrikman (HS)
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bounds. The upper and lower HS bounds were derived by

Hashin and Shtrikman (1963) using a linear theory of

elasticity with the elastic polarization tensor method. In

their derivation, potential energy and complementary

energy were assumed to be minimum. The experimental

data of Walsh et al. (1965) essentially track the theoretical

curve of J ¼ 0.5 for samples of low or immediate porosity

( fs $ 0.5). In these samples, the pores are nearly spherical

and non-interconnecting (Walsh et al., 1965). It is clear that

the geometry of pore space is another important factor other

than the phase continuity to affect the J value and further

elastic properties of the composite. Isolated spherical pores

cause the J value to be higher than sharp-cornered holes or

flat elliptical cavities. Likely, J < 0.5 for the case of

identically spherical pores while J < 0.25 for that of non-

spherical or non-symmetric cavities. Fig. 2 also displays that

the model with J ¼ 0.5 yields a better prediction than the

upper HS bound in the case of the porous glass investigated

by Walsh et al. (1965).

Berge et al. (1995) made measurements on P- and S-

wave velocities of synthetic sandstone using sintered glass

beads with porosities ranging from 1 to 43%. The glass has

composition (by weight) 71–74% SiO2, 12–15% NaO2, 8–

10% CaO, 1.5–3.8% MgO, 0.2–1.5% Al2O3 and 0–0.2%

K2O, and elastic properties K ¼ 46.1 GPa, G ¼ 29.8 GPa,

r ¼ 2.48 g/cm3, Vp ¼ 5.86 km/s and Vs ¼ 3.43 km/s. The

overall Young’s, bulk and shear moduli of composites were

computed from measured densities and acoustic velocities.

Comparison between theory and experiment (Fig. 3) shows

a clear drop of the relative E, G and K towards a critical

porosity of about 0.26. For porosities below about 0.26

( fs . 0.74), the samples have similar microstructures with

isolated spherical pores embedded in a continuous solid

glass (Berge et al., 1995) and the experimental data can be

well described by the generalized means with J ¼ 0.5 or by

the upper HS bound. The critical porosity presumably

coincides with the minimum porosity for closely packed

identical spheres. In Fig. 4, we plot measured P- and S-wave

velocities of the sandstone analogues together with the

theoretical predictions. Both P- and S-wave velocities of

synthetic sandstone containing isolate pores and having

porosities lower than 0.26 are in agreement with the

theoretical curves for J ¼ 1.5. In sandstones with higher

porosities (0.26–0.43), the geometry of pores becomes

complex and interaction between pores occurs. Conse-

quently, the J value decreases progressively with increasing

porosity. It is important to note that both P- and S-wave

velocities of the composites with SPSS are virtually higher

Fig. 1. Experimental and theoretical results for relative Young’s modulus of

porous Al2O3 ((a) and (b)) and MgO (c) as a function of the volume fraction

of solid component. Curves labelled according to J value. H represents the

Hill average.

Fig. 2. Comparison between experimental and theoretical results for

relative bulk modulus (Kc 2 Kw)/(Ks 2 Kw) for glass foams. Theoretical

curves labelled according to J value. H, HSþ and HS2 represent the Hill

average, and the Hashin–Shtrikman upper and lower bounds, respectively.
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than the Voigt bounds (J ¼ 1). Hence, a systematic

investigation is urged to determine whether the above

observation is a common situation for all types of materials.

In Figs. 5 and 6, the theoretical predictions are plotted in

junction with experimental data for WC–Co cermets

(Doi et al., 1970; Perrott, 1978). E ¼ 700 GPa and

G ¼ 297.9 GPa for WC, and E ¼ 207 GPa and

G ¼ 79.4 GPa for Co. In these alloys, the volume fraction

of WC (strong phase) is higher than 0.55 and Co (weak

phase) shows a homogeneous dispersion in the matrix of

WC. It can be clearly seen that the simple expression with

J ¼ 0.25 gives a good prediction of both the E and K

variations over the composition range of fWC . 0.55, where

the strong phase forms a continuous load-carrying frame-

work. For the shear modulus G, however, J ¼ 0 (i.e.

geometrical mean) seems to give the best prediction for the

experimental data. The reason for the discrepancy among

the E, K and G variations with the volume fractions is

unclear yet.

3.2. WPSS composites

Extensive measurements of elastic properties have been

carried out on WPSS composites that include Al–SiC,

glass–Al2O3, epoxy–glass, epoxy–silica, epoxy–Al, poly-

mer–glass, Al–spinel and Al alloy–boron mixtures. These

experimental results may shed light on the understanding of

the mechanical properties and rheological behaviour of

natural rocks of WPSS such as quartzofeldspathic mylo-

nites, peridotites, eclogites and partially crystallized rocks.

Utilizing the values of Young’s moduli of Al

(Ew ¼ 74 GPa) and SiC (Es ¼ 450 GPa) and Eq. (1), we

made some quantitative comparisons of the Young’s moduli

Fig. 3. Comparison between experimental and theoretical results for

relative Young’s modulus (a), shear modulus (b) and bulk modulus (c) for

sandstone analogues made from fused glass beads. Theoretical curves

labelled according to J value. H and HSþ represent the Hill average and the

Hashin–Shtrikman upper bound, respectively.

Fig. 4. P-wave (a) and S-wave (b) velocities for sandstone analogues made

from fused glass beads plotted against volume fraction of solid glass.

Theoretical curves labelled according to J value. H represents the Hill

average.
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between theory and experiment (McDanels, 1985; Lloyd,

1991; Yang et al., 1991) for Al–SiC composites (Fig. 7a and

b). The experimental points of Young’s moduli run very

closely to the curves for J ¼ 20.25. The composition

dependence of Young’s moduli of Al matrix composites

with boron (Chen and Lin, 1969; Fig. 7c) or spinel

(Gustafson et al., 1997; Fig. 8a) reinforcements also

suggests that J ¼ 20.25 gives the best prediction for the

experimental results. However, the experimental points for

G and K of Al–spinel composites (Fig. 8b and c) fall closely

to curves with J ¼ 0 and J ¼ 21.5, respectively.

Composites composed of solid glass or silica micro-

spheres embedded in an epoxy resin or polymer matrix have

been investigated by Braem et al. (1987), Ishai and Cohen

(1967), Kenyon and Duffey (1967), Richard (1975) and

Smith (1976). These experimental data are plotted among

the analytical predictions for different J values in Figs. 9 and

10. In all cases, the prediction with J ¼ 20.25 provides the

best fit to the experimental data of Young’s moduli. It is

interesting to note that the calculated Young’s moduli from

either the upper or lower HS bound in all cases have larger

deviations from experimental data than those calculated

from Eq. (1) with J ¼ 20.25. Fig. 10c shows a good

correlation of the experimental data of bulk modulus with

the theoretical prediction with J ¼ 21.5. This is similar to

the case of Al–spinel composites (Fig. 8c). Why do the data

of K fall outside the HS bounds while both E and G inside

the bounds for certain types of materials such as Al–spinel

(Gustafson et al., 1997) and epoxy–glass (Richard, 1975)

composites? Without a detailed examination of their

samples, we can only speculate that the paradox is due to

the presence of small amounts of residual void space in the

samples that are treated for purposes of modelling as if they

have no porosity (Berryman, 1994, 1995).

Zhang et al. (1996) investigated the effective elastic

properties of a two-phase composite consisting of aluminum

particles embedded randomly in a continuous resin matrix.

Bulk and shear moduli for aluminum are 77.44 and

24.77 GPa, respectively. Bulk and shear moduli for resin

are 5.31 and 1.82 GPa, respectively. The shapes of the Al

inclusions are elongate with aspect ratios (width/length)

ranging from 0.1 to 1.0, averaging about 0.25. The bulk,

shear and Young’s moduli of the composites, obtained from

velocities of ultrasonic waves, are plotted in Fig. 11. The

observed relative Young’s and shear moduli can be best

fitted by the theoretical curve of J ¼ 20.25 (Fig. 11a and b).

In contrast, the relative bulk modulus is best fitted by the

Fig. 5. Relative Young’s modulus (a), shear modulus (b) and bulk modulus

(c) for WC–Co alloys plotted against volume fraction of WC. Theoretical

curves labelled according to J value. H, HSþ and HS2 represent the Hill

average, and the Hashin–Shtrikman upper and lower bounds, respectively.

Fig. 6. Relative Young’s modulus for WC–Co alloys plotted against

volume fraction of WC. Theoretical curves labelled according to J value. H

represents the Hill average.
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theoretical curves of J ¼ 20.5 (Fig. 11c). In addition,

measured P- and S-wave velocities of the composites (Fig.

12) correspond to theoretical curves of J ¼ 22.0 and21.0,

respectively. Hence, even for the composites with the same

composition and same microstructure, J values are different

for different elastic moduli or mechanical properties. This

aspect should receive a further detailed study.

Glass–Al2O3 composites investigated by Hasselman

and Fulrath (1965a) are characterized by a sodium

borosilicate glass (16% Na2O, 14% B2O3 and 70%

SiO2) containing dispersions of alumina particles. The

composite aggregates were prepared using a vacuum

hot-pressing technique at 725 8C. The alumina particles,

which are crushed sapphire, are quite jagged and

nonspherical in shape and have a mean particle size

of about 50 mm. The Young’s moduli for the glass and

the alumina are 80.5 and 411 GPa, respectively (Hassel-

man and Fulrath, 1965a). The Poisson’s ratios of the

Fig. 7. Theoretical curves on relative Young’s modulus (Ec 2 Em)/(Es 2

Em) for aluminium–matrix composites plotted against volume fraction of

reinforcement. Al–SiC composites ((a) and (b)) and Al–boron composites

(c). J value is given in number. H represents the Hill average.

Fig. 8. Relative Young’s modulus (a), shear modulus (b) and bulk modulus

(c) for Al–spinel composite plotted against volume fraction of spinel.

Theoretical curves labelled according to J value. H, HSþ and HS2 represent

the Hill average, and the Hashin–Shtrikman upper and lower bounds,

respectively.
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glass and the alumina are 0.194 and 0.257, respectively.

As shown in Fig. 13a, the theoretical curve with

J ¼ 20.25 tracks the lower HS bound at fs # 0.4,

where both predictions agree very well with the

experimental results. At higher fs, however, the

generalized means give definitely better agreement

with the data than the lower HS bound.

Hasselman and Fulrath (1965b) also measured the

Young’s moduli of glass– tungsten composites with

fs # 0.5. The Young’s moduli and Poisson’s ratios for

the glass and the tungsten are 80.5 and 355 GPa and

0.197 and 0.198, respectively. There is a good consist-

ence between their experimental results and our

theoretical curve with J ¼ 20.25 (Fig. 13b). Similarly,

the generalized means provide a better prediction than

the lower HS bound. Thus, a good agreement of the

calculated and experimental data for a large number of

two-phase composite systems evaluated above supports

that J ¼ 20.25 for predicting effective Young’s modulus

of the composites with WPSS.

Einstein (1906, 1911) theoretically analysed the rheology

of a specific WPSS composite, which is a dilute suspension

of identical rigid spheres in a Newtonian viscous liquid, and

obtained:

hc ¼ hw 1þ
5

2
fs

� �
ð7Þ

where hc and hw are the bulk viscosity of the suspension and

the viscosity of the liquid, and fs is the volume fraction of

rigid spheres. In the dilute system, each single sphere is

isolated in the continuous liquid matrix, and no slip occurs

between the spheres and the liquid. This famous Einstein

equation, which agrees with many experimental data (e.g.

Mewis and Macosko, 1994), has been widely used in the

rheological study of solid–liquid suspensions such as

partially melted rocks (Arzi, 1978; Lejeune and Richet,

1995). As shown in Fig. 14, the generalized means with

J ¼ 20.5 yield a very close approximation to the Einstein

equation with a relative error less than 1% as long as the two

phase composite is a really dilute suspension (i.e. fs # 0.15).

The above comparison again suggests that J ¼ 20.5 for the

WPSS composites with their strong phases are identically

spherical.

Fig. 9. Comparison of the predictions of the present approach, the Hashin–Shtrikman upper (HSþ) and lower (HS2) bounds, Paul’s (1960) calculations (P)

with experimental data on relative elastic Young’s moduli of epoxy resin-based composites. Epoxy–silica composites ((a) and (b)) and epoxy–glass

composites ((c) and (d)). J value is given in number. H represents the Hill average.
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4. Application to the interpretation of 410-km seismic

discontinuity

The seismic discontinuity at 410 km depth is con-

sidered to be caused by a phase transition of the main

constituent of the upper mantle–olivine to wadsleyite

(i.e. modified spinel or b phase of (Mg, Fe)2SiO4;

Lebedev et al., 2002). Seismological studies using high-

frequency reflected and converted waves indicate that

this discontinuity has a width of less than 4–6 km

(Leven, 1985; Paulssen, 1988; Benz and Vidale, 1993),

which is much too thin to be explained by the depth

interval (,14 km corresponding to 0.5 GPa at 1600 8C;

Akaogi et al., 1989; Katsura and Ito, 1989; Fei et al.,

1991) over which olivine transforms fully to wadsleyite.

A number of hypotheses have been proposed to explain

why the phase transition is much sharper than the

prediction based on the width of the binary coexistence

region. These hypotheses include:

Fig. 10. Comparison of the predictions of the present approach, the

Hashin–Shtrikman upper (HSþ) and lower (HS2) bounds with experimen-

tal data on relative Young’s modulus (a), shear modulus (b) and bulk

modulus (c) of epoxy–glass composites. J value is given in number. H

represents the Hill average.

Fig. 11. Relative Young’s modulus (a), shear modulus (b) and bulk modulus

(c) for epoxy–Al composite plotted against volume fraction of Al.

Theoretical curves labelled according to J value. H, HSþ and HS2 represent

the Hill average, and the Hashin–Shtrikman upper and lower bounds,

respectively.
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1. Seismic discontinuities originate from so-called univar-

iant phase transitions that occur suddenly at a very

narrow pressure interval (Jeanloz and Thompson, 1983).

However, the chemical system of the upper mantle is

multicomponent, and simple phase relations show that

the transition from olivine to wadsleyite must occur in a

divariant loop (Wood, 1995). Furthermore, for a

univariant phase transition to produce the 410-km

discontinuity, the Fe content of the upper mantle should

be substantially different from that generally accepted on

the basis of geochemical data from mantle xenoliths

(Stixrude, 1997).

2. Seismic discontinuities are caused by a change not only

of phase but also of composition (Lees et al., 1983; Bina

and Kumazawa, 1993) over a narrow depth interval. As

pointed out by Stixrude (1997), however, the formation

of a well developed compositional stratification in the

upper mantle would require large chemical diffusivities

that, in turn, require substantial amounts of fluids.

3. Seismic discontinuities are caused by phase transitions

that occur under non-equilibrium conditions in a

dynamic system (Solomatov and Stevenson, 1994).

This mechanism is most likely to occur in subducting

slabs rather than in most of the mantle.

4. The volume fraction of the high-pressure phase (generally

elastically stiffer) increases nonlinearly with temperature

and pressure so that most of the phase transition is

completed over a narrow depth interval (Stixrude, 1997).

Fig. 12. P-wave (a) and S-wave (b) velocities for epoxy–Al composites

plotted against volume fraction of Al. Theoretical curves labelled according

to J value. H represents the Hill average.
Fig. 13. Theoretical curves on relative Young’s modulus (Ec 2 Ew)/(Es 2

Ew) for glass–matrix composites plotted against volume fraction of

reinforcement. Glass–Al2O3 composites (a) and glass–tungsten compo-

sites (b). Theoretical curves labelled according to J value. H, HSþ and HS2

represent the Hill average, and the Hashin–Shtrikman upper and lower

bounds, respectively.

Fig. 14. Comparison between the predictions of the present approach and

the Einstein equation for the relative viscosity of a suspension as a function

of identically spherical, solid inclusions.
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5. Non-transforming phases such as pyroxenes and garnet

act as buffers to reduce the total width over which a

transition occurs (Stixrude, 1997).

6. The paradox is due to the difference in H2O content

between actual upper mantle and experimental

samples because the pressure interval of the olivine

to wadsleyite transformation increases with increasing

the H2O content (Wood, 1995).

In all the above models, the width of the phase transition is

taken as controlled by the width of the coexistence region (i.e.

equilibrium phase loop of Stixrude, 1997). Here we propose

that the sharpness is essentially governed by a critical high-

pressurephase volume fraction range overwhich the transition

is completed fromweak-phase supported structure (WPSS) to

strong-phase supported structure (SPSS). When olivine

progressively transforms to wadsleyite with increasing depth

in the transition zone, an increase in wadsleyite volume

fraction is accompanied by a change in microstructure (i.e.

phase continuity and connectivity). The composition depen-

dence of the elastic moduli then cannot be expressed by an

equation like Eq. (1) with a single J value valid over the whole

range of fwadsleyite from zero to unity. Fig. 15a and b illustrates

the variation of P- and S-wave impedances for olivine–

wadsleyite mixtures due to the WPSS to SPSS transition. For

the SPSS mixtures, the impedance varies with wadsleyite

volume fraction according to curve ABCD. For the WPSS

mixtures, however, the impedance varies with wadsleyite

volume fraction according to curve DEFA. When the volume

fraction of wadsleyite reaches a critical value, say about 40–

45%, the olivine frame begins to be progressively dismem-

bered by wadsleyite grains. After the volume fraction of

wadsleyite is larger than a second critical value, say 70–75%,

olivine grains are fully dispersed as residuals in a continuous

matrix of wadsleyite. Therefore, there is an evolution in

seismic impedance for the olivine–wadsleyite mixture from

D, through E and B, finally to A (Fig. 15) during progressive

olivine to wadsleyite transformation with increasing pressure

or depth.

No model is available for describing the elastic proper-

ties or flow strength of two-phase composites in the

transitional regime (Ji et al., 2001). Let M1, f1 and M2, f2
be the overall elastic moduli and the strong phase volume

fractions at the lower and upper boundaries of the transition

range (E and B points in Fig. 15), respectively. We assume

that a mathematic expression, Mc( fs), for the transitional

regime should be constrained by the following conditions:

(1) Mc( fs) is a continuous, monotonically increasing

function in the range from f1 to f2; (2) Mc ¼ M1 at fs ¼ f1
and Mc ¼ M2 at fs ¼ f2; (3) the curve Mc( fs) is symmetrical

with respect to the mid-point where fs ¼ ( f1 þ f2)/2 and

Mc ¼ (M1 þ M2)/2, therefore,Mc( fs) is an odd function of fs
and

Mc fs 2
f1 þ f2

2

� �
¼ 2Mc

f1 þ f2
2

2 fs

� �
;

and (4)Mc( fs) is concave when fs # ( f1 þ f2)/2, and convex

when fs $ ( f1 þ f2)/2. The simplest expression that satisfies

with the above limiting conditions is the following smooth

function:

Mc ¼
M1 þM2

2
þ d

M2 2M1

20
BBBB@

����� fs 2 f1 þ f2
2

�����
f2 2 f1

2

1
CCCCA

1=k

ð8Þ

where k is an odd number, d ¼ 1 when fs $ ( f1 þ f2)/2, and

d ¼ 21 when fs # ( f1 þ f2)/2. Although Eq. (8) is certainly

not a unique solution to the limiting conditions, we could

not find any additional constraints to warrant the use of a

more complicated expression.

Fig. 15. Variation of P-wave (a) and S-wave (b) impedances for olivine–

wadsleyite system with its composition for three typical structures: curve

ABCD, discontinuous weak phase (olivine) grains in continuous strong

framework of wadsleyite; curve DEFA, discontinuous strong phase

(wadsleyite) embedded in a continuous weak matrix; curve EB, calculated

from Eq. (8) with J ¼ 0.5 and k ¼ 1.1, both phases are either discontinuous

or continuous and there is a transition from an olivine-dominant

configuration to a wadsleyite-dominant configuration with increasing the

volume fraction of wadsleyite (from E to B).

S. Ji et al. / Journal of Structural Geology 26 (2004) 1377–1390 1387



The P- and S-wave impedance contrasts are about 3.6%,

across the critical fwadsleyite range over which WPSS

transforms to SPSS. This impedance contrast agrees with

the value in the preliminary reference Earth model

(Dziewonski and Anderson, 1981). The volume fraction

range for the WPSS to SPSS transition is only one third the

width of the olivine 2 wadsleyite coexistence region. This

means that the effective width of the seismic discontinuity at

410 km mainly indicates the width of the transition from

olivine-supported structure to wadsleyite-supported struc-

ture rather than that of a full experimentally determined

binary phase loop. The latter is substantially larger than the

actual width of the seismic discontinuity. For temperatures

and pressures in a typical transition zone the effective width

of the WPSS to SPSS transition lies between 4 and 6 km.

This agrees with the maximum width of an equivalent linear

discontinuity (4–6 km) found in reflections from the 410-

km discontinuity (Leven, 1985; Benz and Vidale, 1993).

When effects of the structural transition on the effective

elastic properties of multiphase mixtures are taken into

account, the transition from olivine to wadsleyite is

sufficient to explain the sharp seismic discontinuity at

410-km depth, and any other special processes or properties

implied in models (1–6) are not required. It may be

reasonable to conclude that any seismic discontinuity due to

phase transformations has a width equivalent to that of the

transition between WPSS and SPSS and being about a

quarter to a third of the width of the binary phase loop.

Therefore, the sharpness of the 410-km seismic disconti-

nuity is a corollary of the transition from olivine-dominant

structure to wadsleyite-dominant structure.

5. Discussion and conclusions

The elastic properties of multiphase composites can be

calculated according to the simple expression proposed in this

paper, which involves utilization of the generalized means.

The approach is believed to be relevant if one phase is a

homogeneous and isotropic continuum (the matrix) with

embedded inclusions of the other phase, which is also

homogeneous, isotropic and randomly distributed through

the matrix. The approach postulates neither untested nor

poorly constrained physical properties or processes (e.g.

isostrain or isostress), nor any approximation of composite

microstructure to an idealized, somehow oversimplified unit

cell (e.g. Tullis et al., 1991; Treagus, 2002). The calculations

require only the knowledge of the elastic modulus and the

volume fraction of each individual phase and a pertinent value

of the microstructural parameter J. Themeans with J ¼ 0.5 or

J ¼ 20.5 provides good agreement with the experimental

data of Young’s modulus for the two-phase composites in

which inclusions are shaped like spheres isolated in a

continuous host medium (Table 1). For most composite

materials in which the inclusions are shaped somewhat

randomly, the means with J ¼ 20.25 and J ¼ 0.25 do well

at predicting the measured values of Young’s modulus for

those with weak-phase continuous (the volume fraction of

strong phase fs # 0.5) and strong-phase continuous ( fs $ 0.7)

structures, respectively (Table 1). In the intermediate

compositional range (0.4–0.5 # fs # 0.6–0.7), J most likely

varies progressively from20.5 to 0.5 or from20.25 to 0.25

due to the transition inmicrostructure.Thuswebelieve that the

generalized means offer a great potential for providing useful

predictive relationships between the composite properties and

the component contents for various multiphase materials

and rocks.

The coefficient J in the generalizedmean formula is shown

to be constant for a given elastic modulus of composites of a

particular microstructure, regardless of the elastic contrast

between constituent phases. Thus, the J value is referred to as a

microstructural coefficient, which depends on the shape and

distribution (continuity and connectivity) of the phases. For

isotropic granular materials and rocks, the phase continuity

and connectivity are a function of phase volume fractions, and

therefore the J value should depend on the phase volume

fractions. The J value changes when a weak-phase supported

structure transforms to a strong-phase supported structure.

Furthermore, for a multiphase material with a constant

microstructure, different J values may be needed to describe

different mechanical properties. Hence, a systematic study is

urged to determine the J values for G, K, P- and S-wave

velocities, viscosity and flow strength.

The theoretical values of Young’s modulus for composites

with weak phase support structure and strong phase support

structure coincide nearly with the commonly used Hashin and

Shtrikman’s (1963) lower and upper bounds, respectively.The

theoretical values calculated with J ¼ 20.25 also agree well

with Paul’s (1960) model for arbitrary phase geometry. The

calculations using the generalized means are direct without

needing to know bulk or shear moduli separately. However,

the calculations of Hashin and Shtrikman bounds require full

information on the bulk and shear moduli of each phase of the

two-phase composites. A full set of elastic data is usually

lacking because only one elastic constant (i.e. Young’s, shear

or bulk modulus) is often measured for the components (see

Berryman (1995) for a review). In the latter cases, the Hashin

andShtrikman’s upper and lowerbounds cannot be calculated.

Moreover, the Hashin–Shtrikman bounds generally lie too far

apart to be useful for practical purposes because no effect of

the composite microstructure has been taken into consider-

ation.Nevertheless, the generalizedmeans have the advantage

that theymakeuse of themicrostructure (by choosingproperly

the J value) to obtain more accurate estimates than the

Hashin–Shtrikman bounds. In addition, the validity of the

Hashin–Shtrikman bounds actually depends on the relative

magnitudes ofKs, Kw,Gs,Gw, ns and nw, where n is Poisson’s

ratio. An inversion of the upper and lower bounds often occurs

at high values of Kw/Ks (.0.2) and/or at low values of nw/ns
(,1.0) (Ji and Wang, 1999).

The Hill average has been widely used in the modelling

of the overall elastic properties of polycrystalline aggregates
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(e.g. Montagner and Anderson, 1989; Zhao and Anderson,

1994; and many others). However, the present study proved

that the elastic constants of the composites could not be

precisely estimated using the Hill scheme for most two-

phase composites investigated.

Although the comparison between theory and experiment

was done for the elastic properties, the present approach can be

easily extended to the prediction of other mechanical and

physical properties of multiphase composites (e.g. flow

strength, electrical conductivity and thermal conductivity).

Furthermore, unlikemanyothermodels that apply toonly two-

phase composites (e.g. Ji and Zhao, 1994; Ravichandran,

1994; Zhao and Ji, 1997), the present model is also adequate

for all composites consisting of more than two phases. We

hope that the present study will encourage systematic

measurements of the J value for composite materials and

rocks with various microstructural characteristics.

Importantly, the generalized means proposed here are

obviously advantageous to have an analytical formula rather

than a computational one. This advantage is extremely

useful if it is desired to invert the elastic data or seismic

velocities to the volume fractions of the composite

constituent phases and the microstructure. The theory

presented in this paper can be used to develop some new

techniques to determine how much volume fraction of

diamond has formed during the phase transition from

graphite in high temperature and high pressure anvils

through in-situ, non-destructive acoustic measurements.

As an application, the effect of the structural transition on

effective elastic properties of binary olivine–wadsleyite

mixtures has been analysed. The analysis suggests that the

width of the seismic discontinuity at 410 km should be

directly governed by the width of the transition from an

olivine-supported structure to a wadsleyite-supported struc-

ture rather than that of an experimentally determined binary

phase loop. The width of the discontinuity is likely reduced

by a factor of three or four with respect to that of the binary

coexistence region. The change in effective elastic proper-

ties due to the structural transition is effectively much

sharper than the width of the binary coexistence region.
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